Numerical Investigation on Aerodynamic Performance of Bird’s Airfoils

Bibliographic Details
Main Author: Omar,Ashraf
Publication Date: 2020
Other Authors: Rahuma,Rania, Emhemmed,Abdulhaq
Format: Article
Language: eng
Source: Journal of Aerospace Technology and Management (Online)
Download full: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462020000100343
Summary: ABSTRACT: In this work, the aerodynamic performance of four types of bird’s airfoils (eagle, stork, hawk, and albatross) at low Reynolds number and a range of angles of attack during fixed (unflapping) gliding flight was numerically investigated utilizing open-source computational fluid dynamics (CFD) code Stanford University unstructured (SU2) and K-ω Shear Stress Transport (K-ω SST) turbulence model. The flow of the simulated cases was assumed to be incompressible, viscous, and steady. For verification and comparison, a low Reynolds number man-made Eppler 193’s airfoil was simulated. The results revealed that stork has the greatest aerodynamic efficiency followed by albatross and eagle. However, at zero angle of attack, the albatross aerodynamic efficiency exceeded all the other birds by a significant amount. In terms of aerodynamics efficiency, stork’s and albatross’s airfoils performed better than Eppler 193 at angles of attack less than 8°, while at a higher angle of attack all studied birds’ airfoils performed better than Eppler 193. The effect of surface permeability was also investigated for the eagle’s airfoil where the permeable surface occupied one-third of the total airfoil surface. Permeability increased the generated lift and the aerodynamic efficiency of the eagle’s airfoil for angles of attack less than 10°. The increase reached 58% for the lift at zero angle of attack. After the specified angle, the permeability had an adverse effect on the flow which may be due to the transition to turbulent ahead of the permeable section.
id DCTA-1_585182a8caf030b686f13366bc47a07d
oai_identifier_str oai:scielo:S2175-91462020000100343
network_acronym_str DCTA-1
network_name_str Journal of Aerospace Technology and Management (Online)
repository_id_str
spelling Numerical Investigation on Aerodynamic Performance of Bird’s AirfoilsBird’s airfoilsSU2 CFD suite codLow Reynolds number flowBirds’ aerodynamicsAirfoil’s permeabilityABSTRACT: In this work, the aerodynamic performance of four types of bird’s airfoils (eagle, stork, hawk, and albatross) at low Reynolds number and a range of angles of attack during fixed (unflapping) gliding flight was numerically investigated utilizing open-source computational fluid dynamics (CFD) code Stanford University unstructured (SU2) and K-ω Shear Stress Transport (K-ω SST) turbulence model. The flow of the simulated cases was assumed to be incompressible, viscous, and steady. For verification and comparison, a low Reynolds number man-made Eppler 193’s airfoil was simulated. The results revealed that stork has the greatest aerodynamic efficiency followed by albatross and eagle. However, at zero angle of attack, the albatross aerodynamic efficiency exceeded all the other birds by a significant amount. In terms of aerodynamics efficiency, stork’s and albatross’s airfoils performed better than Eppler 193 at angles of attack less than 8°, while at a higher angle of attack all studied birds’ airfoils performed better than Eppler 193. The effect of surface permeability was also investigated for the eagle’s airfoil where the permeable surface occupied one-third of the total airfoil surface. Permeability increased the generated lift and the aerodynamic efficiency of the eagle’s airfoil for angles of attack less than 10°. The increase reached 58% for the lift at zero angle of attack. After the specified angle, the permeability had an adverse effect on the flow which may be due to the transition to turbulent ahead of the permeable section.Departamento de Ciência e Tecnologia Aeroespacial2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462020000100343Journal of Aerospace Technology and Management v.12 2020reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v12.1182info:eu-repo/semantics/openAccessOmar,AshrafRahuma,RaniaEmhemmed,Abdulhaqeng2020-10-07T00:00:00Zoai:scielo:S2175-91462020000100343Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2020-10-07T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false
dc.title.none.fl_str_mv Numerical Investigation on Aerodynamic Performance of Bird’s Airfoils
title Numerical Investigation on Aerodynamic Performance of Bird’s Airfoils
spellingShingle Numerical Investigation on Aerodynamic Performance of Bird’s Airfoils
Omar,Ashraf
Bird’s airfoils
SU2 CFD suite cod
Low Reynolds number flow
Birds’ aerodynamics
Airfoil’s permeability
title_short Numerical Investigation on Aerodynamic Performance of Bird’s Airfoils
title_full Numerical Investigation on Aerodynamic Performance of Bird’s Airfoils
title_fullStr Numerical Investigation on Aerodynamic Performance of Bird’s Airfoils
title_full_unstemmed Numerical Investigation on Aerodynamic Performance of Bird’s Airfoils
title_sort Numerical Investigation on Aerodynamic Performance of Bird’s Airfoils
author Omar,Ashraf
author_facet Omar,Ashraf
Rahuma,Rania
Emhemmed,Abdulhaq
author_role author
author2 Rahuma,Rania
Emhemmed,Abdulhaq
author2_role author
author
dc.contributor.author.fl_str_mv Omar,Ashraf
Rahuma,Rania
Emhemmed,Abdulhaq
dc.subject.por.fl_str_mv Bird’s airfoils
SU2 CFD suite cod
Low Reynolds number flow
Birds’ aerodynamics
Airfoil’s permeability
topic Bird’s airfoils
SU2 CFD suite cod
Low Reynolds number flow
Birds’ aerodynamics
Airfoil’s permeability
description ABSTRACT: In this work, the aerodynamic performance of four types of bird’s airfoils (eagle, stork, hawk, and albatross) at low Reynolds number and a range of angles of attack during fixed (unflapping) gliding flight was numerically investigated utilizing open-source computational fluid dynamics (CFD) code Stanford University unstructured (SU2) and K-ω Shear Stress Transport (K-ω SST) turbulence model. The flow of the simulated cases was assumed to be incompressible, viscous, and steady. For verification and comparison, a low Reynolds number man-made Eppler 193’s airfoil was simulated. The results revealed that stork has the greatest aerodynamic efficiency followed by albatross and eagle. However, at zero angle of attack, the albatross aerodynamic efficiency exceeded all the other birds by a significant amount. In terms of aerodynamics efficiency, stork’s and albatross’s airfoils performed better than Eppler 193 at angles of attack less than 8°, while at a higher angle of attack all studied birds’ airfoils performed better than Eppler 193. The effect of surface permeability was also investigated for the eagle’s airfoil where the permeable surface occupied one-third of the total airfoil surface. Permeability increased the generated lift and the aerodynamic efficiency of the eagle’s airfoil for angles of attack less than 10°. The increase reached 58% for the lift at zero angle of attack. After the specified angle, the permeability had an adverse effect on the flow which may be due to the transition to turbulent ahead of the permeable section.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462020000100343
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462020000100343
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5028/jatm.v12.1182
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
dc.source.none.fl_str_mv Journal of Aerospace Technology and Management v.12 2020
reponame:Journal of Aerospace Technology and Management (Online)
instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron:DCTA
instname_str Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron_str DCTA
institution DCTA
reponame_str Journal of Aerospace Technology and Management (Online)
collection Journal of Aerospace Technology and Management (Online)
repository.name.fl_str_mv Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
repository.mail.fl_str_mv ||secretary@jatm.com.br
_version_ 1754732532142702592