Classificação de incompatibilidades cross-browser de layout: um estudo comparativo entre diferentes modelos
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Cornelio Procopio |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Informática
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/5425 |
Resumo: | A complexidade do desenvolvimento de aplicativos Web está maior a cada dia devido ao grande número de navegadores disponíveis no mercado. Como consequência o número de inconsistências entre as aplicações Web também aumentou. Quando o mesmo aplicativo Web é renderizado em diferentes navegadores, as inconsistências detectadas no layout ou no comportamento das páginas são conhecidas como XBIs (Cross Browser Incompatibilities). O impacto de XBIs em aplicativos Web varia de pequenas inconsistências a falhas no layout ou na funcionalidade de um aplicativo Web. Assim, os XBIs podem afetar diretamente a experiência do usuário final durante a navegação no aplicativo Web. Para garantir a qualidade dos aplicativos Web, testadores e desenvolvedores devem inspecionar manualmente os aplicativos em cada navegador específico, para que os XBIs sejam identificados e corrigidos antes da implantação do sistema. Atualmente, existem diversos modelos na literatura para a identificação e correção automática de XBIs. Esses modelos evoluíram com o objetivo de reduzir falsos positivos e negativos. Este trabalho compara alguns modelos, focando aqueles que utilizam a classificação de XBIs de layout, por meio de algoritmos de aprendizado de máquina. Ainda não há um trabalho na literatura que faça essa comparação, identificando suas principais vantagens e desvantagens. Este trabalho consiste em um experimento que compara os resultados dos modelos e apresenta métricas de eficácia, visando trazer informações importantes como contribuições para propor trabalhos futuros em relação à evolução dos modelos explorados. Nesse experimento o resultado é o valor obtido pela métrica da Medida F. Para essa métrica, os valores mais altos implicam maior eficiência na detecção de incompatibilidades entre os navegadores, e a configuração C5.0 10 iterações - Paes, Watanabe obteve o melhor resultado nesse experimento. |