Detecção de ponto de mudança em séries temporais utilizando o espectro do grafo

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Uzai, Luis Gustavo de Carvalho lattes
Orientador(a): Kashiwabara, Andre Yoshiaki lattes
Banca de defesa: Kashiwabara, Andre Yoshiaki lattes, Lopes, Fabricio Martins lattes, Barbon Junior, Sylvio lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Cornelio Procopio
Programa de Pós-Graduação: Programa de Pós-Graduação em Informática
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/5452
Resumo: Séries temporais são sequência de valores distribuídos ao longo do tempo. Analisar séries temporais é importante em várias áreas, incluindo médica, financeira, aeroespacial, comercial e entretenimento. Detecção de pontos de mudança é o problema em identificar a mudança no significado ou distribuição dos dados em uma série temporal. O interesse acadêmico e comercial no tema foi ampliado na ultima década devido ao aumento de potência e complexidade de sensores, além do avanço de processos tecnológicos, que, possibilitaram a captura e reconhecimento de um grande volume de dados. Muitos algoritmos amplamente utilizados na atualidade tem dificuldade para chegar em resultados ótimos quando o número de dimensões aumenta ou o volume de dados cresce exponencialmente, também existem séries temporais onde a maioria dos algoritmos não possui resultados satisfatórios (mais de 0.80 de precisão) mesmo considerando dados bidimensionais como em distribuições baseadas em contexto. A maioria dos algoritmos conhecidos e mais eficiente em cenários específicos e menos em outros, por tanto, um número maior de opções de soluções aumenta a probabilidade do usuário obter um algoritmo que atenda melhor suas necessidades. Soluções para essas questões são de grande interesse ecológico e econômico. O objetivo deste trabalho é o desenvolvimento de um algoritmo para detecção de pontos de mudança, não supervisionado que seja aplicável em séries com múltiplos pontos de mudança e com um grande volume de dados com alta precisão. Para atingir esse objetivo foi desenvolvido o novo método SpecDetec, um algoritmo que utiliza o agrupamento com espectro de grafo para detectar pontos de mudança. O algoritmo foi publicado em um pacote no CRAN como SpecDetec e está disponível para uso de forma irrestrita. O SpecDetec foi avaliado utilizando o UCR Archive que e uma grande base de dados de diferentes séries temporais. A performance do SpecDetec foi comparado com outros algoritmos que representam o estado da arte na detecção de pontos de mudança. Os resultados mostraram que agrupamento com espectro do grafo e uma técnica eficiente para detecção de pontos de mudança, pois o SpecDetec alcançou uma exatidão melhor em comparação ao estado da arte em alguns cenários específicos e tão eficiente quanto na maioria dos casos avaliados. Em contextos onde é possível suportar uma tolerância de até 0.05 o SpecDetec é recomendado pois se mostrou superior aos outros algoritmos na maioria das bases de dados.