Projeto de filtros digitais IIR com técnicas de computação evolucionária

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Oliveira, Daniel Rossato de
Orientador(a): Lopes, Heitor Silvério
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/211
Resumo: O projeto de filtros digitais do tipo IIR é um problema clássico da engenharia. Filtros digitais possuem diversas aplicações, e muitas variantes de comportamento. Existem vários métodos especialistas consagrados na literatura, cada um com suas peculiaridades e adequações a diferentes casos. Porém, a maior parte destes métodos não é flexível, impedindo a especificação de todos os parâmetros importantes de um filtro, pois alguns desses são um sub-produto do processo de cálculo. Por isso, este problema também é atacado na literatura através de técnicas de computação evolucionária. Diversos estudos foram encontrados com esta abordagem, mas em quase todos, o enfoque era dado no algoritmo evolucionário em vez de no filtro, utilizando este apenas como uma função de \emph{benchmark}. Além disso, a estabilidade do filtro - condição imprescindível para a utilização do mesmo - é desprezada em quase todos os trabalhos. Portanto, este trabalho propõe uma função de \emph{fitness} e uma nova codificação para este problema, de forma a possibilitar a obtenção de bons filtros, dentro das especificações, com algoritmos de Computação Evolucionária na forma canônica, isto é, sem modificações estruturais. A função de \emph{fitness} proposta busca corrigir distorções causadas pela função tradicional, que não leva em conta a obediência às especificações do filtro. A codificação mapeia o espaço de busca apenas para as soluções estáveis, sem excluir nenhuma solução válida nesta transformação. Além disso, um pós-processamento permite equalizar a resposta em fase do filtro, isto é, tornar o atraso de fase na banda de passagem linear, condição necessária para a utilização em diversos sistemas, especialmente os de telecomunicações. O desempenho das modificações é comparado com as abordagens clássicas utilizadas na literatura, e o conjunto escolhido como o mais eficiente é utilizado para comparar os dois algoritmos mais utilizados em Computação Evolucionária, o PSO e o AG. Após esse passo, experimentos extensivos de ajuste de parâmetros foram realizados, para que a versão final fosse comparada com o método especialista mais poderoso, que é o cálculo de filtros elípticos. Os resultados mostraram que o conjunto de modificações proposto fez com que excelentes filtros fossem obtidos, com uma taxa de obediência às especificações muito superior à obtida sem o mesmo. Comparando com o método especialista, o desempenho foi semelhante, com pontos a favor e contra cada um, mostrando que o projeto de filtros IIR através de Computação Evolucionária pode ser utilizado em sistemas reais. Em trabalhos futuros poderão ser estudadas novas modificações na funçao de \emph{fitness}, além do desempenho obtido com outros algoritmos evolucionários. A utilização em sistemas \emph{online} é uma aplicação promissora, e o comportamento deste método com especificações não-estacionárias, oriundas de informações de estimação de canal também deve ser investigado.