Classificação de eventos em redes de distribuição de energia elétrica utilizando modelos neurais autônomos

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Lazzaretti, André Eugênio
Orientador(a): Vieira Neto, Hugo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/1330
Resumo: Este trabalho apresenta uma metodologia para classificação de eventos de curto-circuito e mano-bras em redes de distribuição de energia elétrica, com base nos registros oscilográficos de tensão na barra da subestação de distribuição. São apresentados os resultados obtidos para duas formas distintas de pré-processamento dos sinais de tensão, sendo a primeira baseada em Transformada de Fourier e a segunda em Transformada Wavelet para diferentes famílias de funções wavelet. Foram comparados três modelos neurais para o processo de classificação: Multi-Layer Perceptron, Radial Basis Function e Support Vector Machine. Os modelos foram treinados levando em conta uma característica autônoma de operação das redes, ou seja, a seleção automática do modelo e o controle de complexidade. Os resultados foram validados para um conjunto de simulações realizadas no programa Alternative Transient Program, visando a aplicação prática do método proposto em um equipamento registrador de oscilografias, desenvolvido pelo Lactec em conjunto com a Copel - Curitiba, PR, denominado Power Quality Monitor. Foram obtidos resultados com desempenho na ordem de 90% de acerto médio para as diferentes formas de pré-processamento e diferente modelos neurais.