Segmentação, classificação e detecção de novas classes de eventos em oscilografias de redes de distribuição de energia elétrica

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Lazzaretti, André Eugenio
Orientador(a): Vieira Neto, Hugo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/1144
Resumo: Este trabalho apresenta novas abordagens para duas das etapas fundamentais relacionadas com análise automática de oscilografias de redes de distribuição: a detecção dos instantes transitórios e a sua classificação. Para comparação e validação dos métodos são utilizadas duas bases de dados, sendo uma delas formada por dados simulados no aplicativo Alternative Transient Program e outra contendo dados reais de oscilógrafos instalados em uma rede de distribuição de energia elétrica. Os dados reais apresentam um conjunto de eventos relevante para as análises aqui propostas, principalmente por conter uma gama variada de eventos, incluindo transitórios decorrentes de descargas atmosféricas. Com relação à detecção de transitórios (segmentação de oscilografias), foram testados os métodos atualmente propostos na literatura, os quais contemplam Filtro de Kalman, Transformada Wavelet Discreta e Modelos Autorregressivos, além de serem propostas duas novas técnicas baseadas no Operador de Energia de Teager e Representação de Dados Utilizando Vetores Suporte. Demonstra-se que, tanto para dados simulados quanto para dados reais, o método de detecção baseado na Representação de Dados utilizando Vetores Suporte aponta para um melhor desempenho global no processo de detecção. Com relação à classificação automática de oscilografias, propõe-se uma nova abordagem incluindo um estágio dedicado à detecção de padrões não inseridos no aprendizado prévio do classificador, denominados de novidades, além da própria classificação multiclasse normalmente empregada para diferenciar múltiplas classes conhecidas a priori. São testadas abordagens utilizando a detecção de novidades e classificação multiclasse em estágios simultâneos e subsequentes, com base nos classificadores X-Médias, K-Vizinhos-Mais-Próximos e Representação de Dados Utilizando Vetores Suporte com diferentes formulações, além do próprio classificador multiclasse baseado em Máquinas de Vetor Suporte. Adicionalmente, é proposto um tratamento aos padrões considerados como novidades, com o intuito de fornecer informações ao especialista sobre as similaridades existentes entre os padrões desse conjunto. Para realizar esse processo, optou-se por utilizar modelos de agrupamento automático. Os resultados finais, principalmente para a base de dados incluindo eventos reais, mostram que é possível obter um desempenho de classificação relevante (acima de 80%) para cada um dos estágios do processo de classificação proposto, o qual inclui a detecção de novidades, a classificação multiclasse e o processamento de padrões classificados como novidades (agrupamento automático).