Classificação automática de desordens vocais usando a variância wavelet

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Santos, Rafael Alberto dos lattes
Orientador(a): Scalassara, Paulo Rogerio lattes
Banca de defesa: Agulhari, Cristiano Marcos lattes, Scalassara, Paulo Rogerio lattes, Guido, Rodrigo Capobianco lattes, Endo, Wagner lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Cornelio Procopio
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/30196
Resumo: Distúrbios vocais podem existir quando a voz não consegue cumprir seu papel básico de transmissão verbal e emocional. Esses distúrbios podem ser percebidos pela variação de parâmetros perceptuais da voz, tais como qualidade, tom e volume. As alterações dos parâmetros da voz podem ser medidas e classificadas de forma automática por meio da análise acústica. O presente trabalho propõe um algoritmo de classificação automática de distúrbios vocais, utilizando a variância wavelet em sinais de vogal "a" com tom neutro para formar um vetor de características. As patologias em análise são o nódulo e edema de Reinke. Essas patologias afetam as pregas vocais e alteram parâmetros acústicos dos sinais de voz. A classificação é realizada utilizando a técnica de aprendizagem supervisionada support vector machine. Os experimentos são realizados como uma classificação binária, entre os grupos Edema/Saudável, Nódulo/Saudável, Edema/Nódulo e Patológico/Saudável, sendo a classe patológica formada pelas patologias nódulo e edema de Reinke. Com o objetivo de comparar os resultados obtidos, realiza-se a extração de atributos dos sinais de voz com outros dois métodos, o mel espectrograma e os coeficientes cepstrais de frequência mel. Os resultados obtidos nos testes são promissores e indicam que as características extraídas dos sinais através da variância wavelet discriminam as classes e podem substituir as técnicas mel espectrograma e MFCC.