Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Fantinato, Paulo César |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-11122008-194055/
|
Resumo: |
Ultimamente, a análise fractal (AF) vem sendo utilizada com sucesso na área de processamento digital de voz, especialmente para fins de segmentação de palavras e fonemas, que é uma das etapas fundamentais dos sistemas de reconhecimento automático de fala (Automatic Speech Recognition - ASR ) e identificação automática de locutor (Automatic Speaker Identification - ASI). O uso prático da AF para ASR e ASI depende de dois fatores básicos: baixo custo computacional, para permitir o uso em tempo-real, e precisão nos resultados, para produzir a segmentação correta e entregar dados coerentes à etapa de classificação. Visando atender a esses objetivos, o presente trabalho propõe uma técnica de segmentação de sinais de voz baseada na dimensão do fractal, obtida com o uso da transformada wavelet discreta (DWT). Diversas famílias de wavelets são testadas e comparadas, sendo que os testes foram realizados com algumas sentenças extraídas da base de dados TIMIT do Linguistic Data Consortium (LDC). |