Segmentação de voz baseada na análise fractal e na transformada wavelet.

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Fantinato, Paulo César
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-11122008-194055/
Resumo: Ultimamente, a análise fractal (AF) vem sendo utilizada com sucesso na área de processamento digital de voz, especialmente para fins de segmentação de palavras e fonemas, que é uma das etapas fundamentais dos sistemas de reconhecimento automático de fala (Automatic Speech Recognition - ASR ) e identificação automática de locutor (Automatic Speaker Identification - ASI). O uso prático da AF para ASR e ASI depende de dois fatores básicos: baixo custo computacional, para permitir o uso em tempo-real, e precisão nos resultados, para produzir a segmentação correta e entregar dados coerentes à etapa de classificação. Visando atender a esses objetivos, o presente trabalho propõe uma técnica de segmentação de sinais de voz baseada na dimensão do fractal, obtida com o uso da transformada wavelet discreta (DWT). Diversas famílias de wavelets são testadas e comparadas, sendo que os testes foram realizados com algumas sentenças extraídas da base de dados TIMIT do Linguistic Data Consortium (LDC).