Localização de faltas em redes de distribuição de energia elétrica: uma metodologia utilizando redes neurais artificiais aliada a dados de reclamação de clientes de uma concessionária

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Souza, Fabrício Augusto de lattes
Orientador(a): Castoldi, Marcelo Favoretto lattes
Banca de defesa: Castoldi, Marcelo Favoretto lattes, Silva, Murilo da lattes, Mathias Neto, Waldemar Pereira lattes, Souza, Silvio Aparecido de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Cornelio Procopio
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/4543
Resumo: A regulamentação do setor elétrico ocorrido nas últimas décadas, aliado com o aumento do nível de informação dos consumidores do setor, tem exigido das concessionárias de distribuição de energia elétrica maior eficiência de seus sistemas e maiores níveis de qualidade no fornecimento de energia a seus clientes. Desta forma, aspectos relacionados à duração das interrupções no fornecimento de energia se tornaram prioritários para as concessionárias. Neste cenário, com o intuito de melhorar a eficiência na localização de faltas em áreas rurais a partir de dados de corrente e tensão da saída do alimentador que ocorreu a falta, utilizando Redes Neurais Artificiais, aliado às informações referentes a chamadas de reclamações de clientes da região atingida. A metodologia desenvolvida se deu por meio de simulações no software ATPDraw, para geração dos dados de entrada das Redes Neurais Artificiais, desenvolvidas no software Matlab® em duas etapas, sendo a primeira responsável pela classificação das faltas e a segunda pela sua localização no alimentador do sistema de distribuição simulado. A utilização de dois tipos de Redes Neurais Artificiais, a Perceptron Multicamadas e os Mapas de Kohonen, uma para cada etapa, garantem um diferencial para a técnica. Os resultados apresentados apontam o potencial da metodologia proposta.