Análise de dados públicos de expressão gênica de distúrbios do espectro do autismo
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Cornelio Procopio |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Bioinformática
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/30201 |
Resumo: | A síndrome do Transtorno do Espectro do Autismo (TEA) é caracterizada por dificuldades de interação, desvio na comunicação e comportamentos repetitivos. Essa síndrome também é definida como perda de contato com a realidade, causada por impossibilidade ou grande dificuldade na comunicação interpessoal. O TEA pode ser classificado de acordo com a gravidade em: leve, moderado e grave. O diagnóstico precoce do autismo é essencial para um tratamento eficaz. As análises transcriptomicas são um meio de obter informações regulatórias para entender o TEA. Nesse sentido, este trabalho apresenta o resultado de uma meta-análise em dados públicos de expressão gênica disponíveis do TEA em estudos associados. A metodologia aplicada consistiu em utilizarmos dados de expressão obtidos após uma revisão da literatura sobre a TEA, Sendo, três conjuntos de dados selecionados, coletados no portal NCBI GEO em Dezembro/19, e analisados via dados RNA-Seq os genes chaves relativos à TEA. O pipeline de análise de RNA-Seq foi utilizado para: (i) extração dos dados em SRA utilizando o fastq-dump, no Rstudio; (ii) avaliação e controle de qualidade via programa Trimmomatic, no qual foi feito o corte de qualidade das sequências; (iii) em seguida, os dados foram alinhados com o genoma de referência (GRCh38) utilizando o Salmon e aplicado a estimativa de quantificação e nível de transcrição; e (iv) o txtimport foi utilizado para a montagem da matriz de contagem, por fim, utilizamos o DESeq para análise de expressão diferencial. A análise da dispersão dos dados de expressão foram exibidos graficamente usando o Vulcano. Em seguida, a técnica PCA (do inglês Principal component analysis) para análise de grupos, junto com a análise de genes enriquecidos, utilizando os termos do GO, identificamos potenciais, grupos e funções dos genes analisados sendo possível identificar um total de dez genes diferencialmente expressos, sendo três genes altamente expressos e sete genes com baixa expressão. Destes genes, oito são codificadores de proteínas, e dois RNAs pequenos. Além disso, foi observado que alguns genes apresentam relação com outra doença genética, no caso a esquizofrenia. |