Previsão do consumo de energia elétrica em um frigorífico: um estudo de caso utilizando regressão linear, redes neurais e máquinas de vetores de suporte

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Antoniolli, Eduarda Araújo lattes
Orientador(a): Santos, José Airton Azevedo dos lattes
Banca de defesa: Santos, José Airton Azevedo dos lattes, Pasa, Leandro Antonio lattes, Silvina, Luani Back lattes, Tonin, Paulo César lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Medianeira
Programa de Pós-Graduação: Programa de Pós-Graduação em Tecnologias Computacionais para o Agronegócio
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/28877
Resumo: Esta pesquisa teve como objetivo realizar a previsão do consumo de energia elétrica de um frigorífico. Para isso, foram desenvolvidos modelos, de series temporais, usando algoritmos de aprendizagem, como regressão linear, redes neurais e máquinas de vetores de suporte, através do software WEKA. A entrada foi o histórico de consumo da unidade, do período de novembro de 2016 a dezembro de 2020. Os hiper parâmetros dos modelos foram escolhidos a partir da avaliação do MAPE e do MAE do conjunto de teste. Para a validação, realizou-se a previsão de um semestre a frente, ou seja, para o período de janeiro de 2021 a junho de 2021. As estimativas foram comparadas com o consumo real observado na unidade. O modelo com melhor desempenho foi o SVM, com um MAPE de 3,38%. Os modelos de regressão linear e redes ˜ neurais, apesar de apresentarem um erro acima do MAPE estabelecido para este trabalho, de 5%, também ao considerados aptos para estimar o consumo futuro de energia elétrica para a unidade em questão.