Reconhecimento de padrões aplicados à identificação de patologias de laringe
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/2013 |
Resumo: | As patologias que afetam a laringe estão aumentando consideravelmente nos últimos anos devido à condição da sociedade atual onde há hábitos não saudáveis como fumo, álcool e tabaco e um abuso vocal cada vez maior, talvez por conta do aumento da poluição sonora, principalmente nos grandes centros urbanos. Atualmente o exame utilizado pela endoscopia per-oral, direcionado a identificar patologias de laringe, são a videolaringoscopia e videoestroboscopia, ambos invasivos e por muitas vezes desconfortável ao paciente. Buscando melhorar o bem estar e minimizar o desconforto dos pacientes que necessitam submeter-se a estes procedimentos, este estudo tem como objetivo reconhecer padrões que possam ser aplicados à identificação de patologias de laringe de modo a auxiliar na criação de um novo método não invasivo em substituição ao método atual. Este trabalho utilizará várias configurações diferentes de redes neurais. A primeira rede neural foi gerada a partir de 524.287 resultados obtidos através das configurações k-k das 19 medidas acústicas disponíveis neste trabalho. Esta configuração atingiu uma acurácia de 99,5% (média de 96,99±2,08%) ao utilizar uma configuração com 11 e com 12 medidas acústicas dentre as 19 disponíveis. Utilizando-se 3 medidas rotacionadas (obtidas através do método de componentes principais), foi obtido uma acurácia de 93,98±0,24%. Com 6 medidas rotacionadas, o resultado obtido foi de acurácia foi de 94,07±0,29%. Para 6 medidas rotacionadas com entrada normalizada, a acurácia encontrada foi de 97,88±1,53%. A rede neural que fez 23 diferentes classificações, voz normal mais 22 patologias, mostrou que as melhores classificações, de acordo com a acurácia, são a da patologia hiperfunção com 58,23±18,98% e a voz normal com 52,15±18,31%. Já para a pior patologia a ser classificada, encontrou-se a fadiga vocal com 0,57±1,99%. Excluindo-se a voz normal, ou seja, utilizando uma rede neural composta somente por vozes patológicas, a hiperfunção continua sendo a mais facilmente identificável com uma acurácia de 57,3±19,55%, a segunda patologia mais facilmente identificável é a constrição ântero-posterior com 18,14±11,45%. Nesta configuração, a patologia mais difícil de se classificar continua sendo a fadiga vocal com 0,7±2,14%. A rede com re-amostragem obteve uma acurácia de 25,88±10,15% enquanto que a rede com re-amostragem e alteração de neurônios na camada intermediária obteve uma acurácia de 21,47±7,58% para 30 neurônios e uma acurácia de 18,44±6,57% para 40 neurônios. Por fim foi feita uma máquina de vetores suporte que encontrou um resultado de 67±6,2%. Assim, mostrou-se que as medidas acústicas precisam ser aprimoradas para a obtenção de melhores resultados de classificação dentre as patologias de laringe estudadas. Ainda assim, verificou-se que é possível discriminar locutores normais daqueles pacientes disfônicos. |