Mineração de textos para o tratamento automático em sistemas de atendimento ao usuário

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Sanga, Dione Aparecido de Oliveira lattes
Orientador(a): Kaestner, Celso Antônio Alves lattes
Banca de defesa: Kaestner, Celso Antônio Alves, Nievola, Julio Cesar, Bastos, Laudelino Cordeiro, Noronha, Robinson Vida
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/2850
Resumo: A explosão de novas formas de comunicação entre empresas e clientes proporciona novas oportunidades e meios para que empresas possam tirar proveito desta interação. A forma como os clientes interagem com as empresas tem evoluído nos últimos anos, devido ao aumento dos dispositivos móveis e o acesso à internet: clientes que tradicionalmente solicitavam atendimento via telefone migraram para meios de atendimento eletrônicos, sejam eles via app´s dos smartphones ou via portais de atendimento a clientes. Como resultado desta transformação tecnológica do meio de comunicação, a Mineração de Textos tornou-se uma atrativa forma das empresas extraírem conhecimento novo a partir do registro das interações realizadas pelos clientes. Dentro deste contexto, o ambiente de telecomunicações proporciona os insumos para a realização de experimentos devido ao grande volume de dados gerados diariamente em sistemas de atendimento a clientes. Esse trabalho tem por objetivo analisar se o uso de Mineração de Textos aumenta a acurácia dos modelos de Mineração de Dados em aplicações que envolvem textos livres. Para isso é desenvolvido uma aplicação que visa a identificação de clientes propensos a saírem de ambientes internos de atendimento (CRM) e migrarem para órgãos regulamentadores do setor de telecomunicações. Também são abordados os principais problemas encontrados em aplicações de Mineração de Textos. Por fim, são apresentados os resultados da aplicação de algoritmos de classificação sobre diferentes conjuntos de dados, para a avaliação da melhoria obtida com a inclusão da Mineração de Textos para este tipo de aplicação. Os resultados obtidos mostram um ganho consolidado na melhoria da acuraria na ordem de 32%, fazendo da Mineração de Textos uma ferramenta útil para este tipo de problema.