Re-Identificação de pessoas em imagens digitais utilizando redes neurais siamesas e triplet baseadas em uma rede neural convolucional e um autoencoder
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Ponta Grossa |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/5231 |
Resumo: | Em ambientes monitorados por câmeras de segurança, o problema de determinar se uma pessoa que está sendo observada já esteve presente na cena ou não, independente se o sistema utiliza uma ou mais câmeras, é chamado de re-identificação de pessoas. Este problema é considerado desafiador, uma vez que as imagens obtidas por câmeras estão sujeitas a sofrer grandes variações, como iluminação e perspectiva. Além disso, pessoas em imagens podem passar por transformações e oclusões parciais. Com isso, este trabalho tem como objetivo o desenvolvimento de duas abordagens para re-identificação de pessoas que sejam robustas a essas variações, por meio de técnicas de aprendizagem profunda. A primeira abordagem proposta utiliza uma arquitetura de rede neural siamesa, composta por duas sub-redes idênticas, esse modelo recebe duas imagens de entrada que podem ser ou não de uma mesma pessoa. A segunda abordagem consiste em uma rede neural triplet, com três sub-redes idênticas e que recebe de entrada uma imagem de referência de uma determinada pessoa, uma segunda imagem da mesma pessoa e outra imagem de uma pessoa diferente. Ambas as redes possuem sub-redes idênticas, formadas por uma rede neural convolucional que irá extrair características gerais de cada imagem e uma rede autoencoder, responsável por tratar as grandes variações que as imagens da entrada podem sofrer. Para analisar e comparar as redes desenvolvidas foram utilizados três datasets, sendo que as medidas de avaliação escolhidas para análise foram a acurácia e a curva CMC. Experimentos realizados comprovaram uma melhora de até 71,05% nos resultados com a utilização do autoencoder nas sub-redes. Além disso, os experimentos também mostraram uma superioridade da rede neural triplet desenvolvida neste trabalho em relação a rede neural siamesa e a outros métodos do estado da arte. |