Identificação de espécies de plantas utilizando autoencoder convolucional e aprendizagem não supervisionada

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Presner, Diego Henrique lattes
Orientador(a): Britto Júnior, Alceu de Souza lattes
Banca de defesa: Campos Junior, Arion de lattes, Maldonado e Costa, Yandre lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Ponta Grossa
Programa de Pós-Graduação: Programa de Pós Graduação Computação Aplicada
Departamento: Departamento de Informática
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/3691
Resumo: As plantas possuem um papel fundamental para a existência de vida no planeta Terra, pois elas convertem gás carbônico (CO2) em oxigênio (O2) e servem de alimento para grande parte dos seres vivos, além de serem utilizadas por diversos segmentos industriais. A importância de trabalhos na linha de pesquisa de identificação/classificação de espécies de plantas, deve-se à vasta biodiversidade, em que muitas destas sofrem risco de extinção ou até mesmo não foram catalogadas/descobertas cientificamente. Ainda, existe a dificuldade de realizar as tarefas de classificação de forma manual (humana). Estudos apontam que a forma automatizada de classificação tem sido eficiente, seus processos demandam menor tempo e quantidade de trabalho ao pesquisador, obtendo assim bons resultados na classificação e rotulação de espécies botânicas. Neste trabalho foi utilizada uma rede neural artificial conhecida como auto-encoder, em específico o auto-encoder convolucional, que emprega o método de aprendizagem não supervisionada/autodidata, utilizando as bases não rotuladas, pois estas são mais fáceis de serem encontradas digitalmente, para realizar o treinamento dos modelos computacionais com imagens de um domínio diferente e pertencentes ao mesmo domínio. Posteriormente os modelos treinados foram utilizados para gerar representações de características diferentes das bases Flavia, Leafsnap e PlantCLEF2015, estas sendo utilizadas para treinar classificadores do tipo SVM, individualmente alcançando taxas de acerto de até 95,00 %. Métodos de combinação de classificadores também foram utilizados, mostrando-se capazes de atingir resultados competitivos com os apresentados no estado da arte.