Métodos sem referência baseados em características espaço-temporais para avaliação objetiva de qualidade de vídeo digital

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Silva, Wyllian Bezerra da
Orientador(a): Pohl, Alexandre de Almeida Prado
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/525
Resumo: O desenvolvimento de métodos sem referência para avaliação de qualidade de vídeo é um assunto incipiente na literatura e desafiador, no sentido de que os resultados obtidos pelo método proposto devem apresentar a melhor correlação possível com a percepção do Sistema Visual Humano. Esta tese apresenta três propostas para avaliação objetiva de qualidade de vídeo sem referência baseadas em características espaço-temporais. A primeira abordagem segue um modelo analítico sigmoidal com solução de mínimos quadrados que usa o método Levenberg-Marquardt e a segunda e terceira abordagens utilizam uma rede neural artificial Single-Hidden Layer Feedforward Neural Network com aprendizado baseado no algoritmo Extreme Learning Machine. Além disso, foi desenvolvida uma versão estendida desse algoritmo que busca os melhores parâmetros da rede neural artificial de forma iterativa, segundo um simples critério de parada, cujo objetivo é aumentar a correlação entre os escores objetivos e subjetivos. Os resultados experimentais, que usam técnicas de validação cruzada, indicam que os escores dos métodos propostos apresentam alta correlação com as escores do Sistema Visual Humano. Logo, eles são adequados para o monitoramento de qualidade de vídeo em sistemas de radiodifusão e em redes IP, bem como podem ser implementados em dispositivos como decodificadores, ultrabooks, tablets, smartphones e em equipamentos Wireless Display (WiDi).