Re-Identificação de veículos em uma rede de câmeras não sobrepostas

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Oliveira, Icaro Oliveira de lattes
Orientador(a): Fonseca, Keiko Veronica Ono lattes
Banca de defesa: Todt, Eduardo lattes, Pio, Jose Luiz de Souza lattes, Fonseca, Keiko Veronica Ono lattes, Delgado, Myriam Regattieri de Biase da Silva lattes, Silva, Ricardo Dutra da lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/26663
Resumo: A re-identificação de veículos em uma rede de câmeras não sobrepostas é um problema de pesquisa importante, que auxilia em atividades de vigilância, estimativa de tempo de viagem, controle de velocidade, investigações criminais e estimativas de fluxo de tráfego. Os desafios deste problema de pesquisa vêm da alta similaridade interclasse, causada por veículos distintos mas fabricados na mesma cor, modelo e marca, e que muitas vezes parecem iguais, com exceção da placa de identificação quando existente, e pela alta dissimilaridade intraclasse, causada por mudanças abruptas de iluminação ou pontos de vista da câmera, que faz com que duas instâncias do mesmo veículo não tenham semelhança significativa. Nesta tese, nós investigamos quais são as características mais distintas e persistentes em imagens de veículos que podem ser extraídas e combinadas para resolver o problema da re-identificação. Para tanto, desenvolvemos um conjunto de redes siamesas que usam duas das características mais importantes disponíveis: a forma ou aparência do veículo e os atributos textuais da placa de identificação. Outros algoritmos estado-daarte para esse problema geralmente tiram vantagem de um desses atributos, no entanto, em muitos casos é difícil distinguir um veículo de outro considerando apenas um tipo de característica. Outra contribuição importante, é a proposta de uma nova base de dados para o problema de reidentificação de veículos, que possui mais de três horas de duração, abrangendo aproximadamente 3000 veículos em dois cruzamentos da cidade de Curitiba — cuja infra-estrutura necessária em relação a instalação de câmeras foi realizada com o apoio da prefeitura — e que tem a característica única de possuir imagens de alta qualidade da traseira do veículo, o que permite a identificação da placa veicular. Em nossos experimentos, nossas arquiteturas alcançaram uma precisão, recall e -score de 99,3%, 98,5% e 98,9%, respectivamente. Como última contribuição, nós discutimos e comparamos três arquiteturas que exploram características da forma do veículo e da placa, mas usando fluxos adicionais e informação temporal.