Detalhes bibliográficos
Ano de defesa: |
2008 |
Autor(a) principal: |
Casanova, Dalcimar |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-04032009-101456/
|
Resumo: |
A biodiversidade das espécies existentes no riquíssimo reino vegetal, tornam os modelos tradicionais de taxonomia uma tarefa muito complexa e morosa, na qual o processo de classificação é tradicionalmente realizado manualmente. As dificuldades presentes nesse processo implicam na existência de poucas pesquisas de classificação vegetal utilizando métodos matemáticos e computacionais. Desta forma, visando contribuir com as técnicas de taxonomia já desenvolvidas, este estudo objetiva desenvolver e testar uma metodologia computacional de identificação de espécies vegetais por meio da análise da textura foliar. Motivado pelo projeto TreeVis, este trabalho realiza uma revisão dos métodos utilizados para análise de textura em imagens digitais (foco concentrado em extração de características e classificação), investigando a aplicabilidade de métodos tradicionais como matrizes de coocorrência, técnicas estado da arte como Gabor wavelets e também de novos e promissoras técnicas de análise de textura, como a dimensão fractal volumétrica. No contexto de classificação investiga-se métodos para reconhecimento de padrões lineares com base em análise de dados multivariados, não lineares com base na teoria das Redes Neurais Artificiais e métodos simples para combinação de diferentes classificadores (comitê de máquinas). Apesar da alta similaridade entre classes e similaridade intraclasses não adequada, os resultados alcançados mostraram-se excelentes. A melhor estratégia de classificação, utilizando comitê de máquinas com descritores de Gabor wavelets/cor e dimensão fractal volumétrica/cor, obteve uma probabilidade de acerto global de 96:32% nas 40 classes estudadas. Esse resultado demonstra como os métodos computacionais de análise de imagens, em especial análise de textura, podem contribuir facilitando e agilizando a tarefa de identificação de espécies vegetais |