Detectando e mitigando ataques DDoS com a abordagem MTD com base na classificação de fluxo automatizada em redes SDN

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Ribeiro, Marcos Aurélio lattes
Orientador(a): Fonseca, Mauro Sergio Pereira lattes
Banca de defesa: Vendramin, Ana Cristina Barreiras Kochem lattes, Maziero, Carlos Alberto lattes, Pigatto, Daniel Fernando lattes, Santi, Juliana de lattes, Fonseca, Mauro Sergio Pereira lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/30973
Resumo: A Negação de Serviço Distribuída (Distributed Denial of Service (DdoS)) coordena ataques sincronizados a sistemas na Internet usando um conjunto de hosts infectados (bots). Os bots são programados para atacar um determinado alvo disparando diversas requisições sincronizadas, causando lentidão ou indisponibilidade do serviço. Esse tipo de ataque cresceu recentemente em magnitude, diversidade e custo econômico. Assim, este estudo tem como objetivo apresentar uma arquitetura de detecção e mitigação de DdoS em Redes Definidas por Software (Software Defined Networking (SDN)). Neste trabalho, considera-se a abordagem Moving Target Defense (MTD), redirecionando inundações maliciosas para servidores descartáveis de baixa capacidade para proteger o servidor principal enquanto desencoraja o invasor. A decisão de redirecionamento é baseada em um sensor, que emprega algoritmos de Aprendizado de Máquina (Machine Learning (ML)) para classificação de fluxo. Quando os fluxos maliciosos são detectados, o sensor notifica o controlador SDN para incluí-los nas listas de hosts maliciosos e realizar o redirecionamento. A validação e avaliação da arquitetura proposta são realizadas por simulação. Resultados considerando diferentes modelos de classificação (probabilístico, linear, redes neurais e árvores) e tipos de ataque indicam que a arquitetura proposta é eficiente em detectar e mitigar ataques DdoS em aproximadamente 3,00 segundos.