Quantificação da incerteza do problema de flexão estocástica de uma viga de Levinson-Bickford através da metodologia λ-Neumann Monte Carlo
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , , |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Mecânica e de Materiais
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/26177 |
Resumo: | Na mecânica estrutural estocástica, o tratamento da incerteza é frequentemente o principal objetivo das simulações numéricas utilizadas para estimar as respostas de um sistema ou fenômeno físico. Essas previsões podem formar a base para a tomada de decisões e, portanto, uma questão relevante a ser estudada é o quão confiável elas são. As incertezas, em geral, são avaliadas sob dois aspectos: a partir da informação estatística disponível e considerando o modelo matemático que representa o problema numericamente. O modelo identifica um conjunto de relações geralmente baseadas em princípios, leis de conservação e métricas de magnitude física. No caso do problema de flexão estocástica de viga é possível associar a aleatoriedade às propriedades do material, da geometria e as cargas atuantes sobre a estrutura e, desta forma as estimativas das respostas estarão presentes no campo de deslocamento, tensão e deformação. No presente trabalho, a formulação variacional do problema estocástico de valor de contorno elíptico com coeficientes aleatórios é estudada à luz da versão estocástica do lema de Lax-Milgram e a propagação e quantificação da incerteza são investigadas a partir da recente metodologia numérica de complexidade assintótica λ-Neumann Monte Carlo. Os resultados da simulação numérica são obtidos para o problema de flexão estocástica de viga de Levinson-Bickford. Esta teoria de alta ordem apresenta a vantagem de atender à condição de cisalhamento nulo nas superfícies laterais e sua formulação pelo método dos Elementos Finitos evita o inconveniente numérico de travamento (shear locking). As soluções são apresentadas sobre um conjunto de aproximações numéricas através de estimativas de erro dos estimadores de valor esperado e variância do campo de deslocamento. São comparados diferentes métodos de quantificação, modelagem da incerteza, condições de contorno, coeficiente de variação e propriedades material e geométrica da viga. |