Um método para seleção de atributos em bases de dados de classificação hierárquica multirrótulo
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Ponta Grossa |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/29933 |
Resumo: | Problemas de classificação hierárquica multirrótulo normalmente precisam lidar com conjuntos de dados que possuem grande número de atributos e rótulos, o que pode interferir de forma negativa no desempenho do classificador. A aplicação de métodos de redução de dimensionalidade pode prover uma melhora significativa no desempenho dos classificadores. A seleção de atributos é um dos métodos de redução de dimensionalidade em bases de dados e compreende a escolha dos atributos mais relevantes a partir dos originais. Três abordagens principais para a seleção de atributos podem ser utilizadas: filtro, wrapper e embutida. De modo particular, a abordagem filtro faz a seleção baseado apenas nas características dos próprios dados e de maneira independente do algoritmo de treinamento. No contexto da classificação hierárquica multirrótulo, alguns métodos de seleção de atributos têm sido propostos. Estes métodos fazem uso de técnicas consolidadas em contextos de classificação plana e classificação monorrótulo, apresentando bons resultados. Neste sentido, este trabalho verificou a aplicabilidade da medida Fisher Score para a seleção de atributos em cenários de classificação hierárquica multirrótulo e propôs um método para esta tarefa utilizando a abordagem filtro. O método FSF-HMC consiste em avaliar os atributos a partir do cálculo individual do Fisher Score. Este cálculo foi adaptado para considerar a hierarquia de classes. Os atributos avaliados com pontuação acima do valor médio de Fisher Score apurado para todos os atributos são selecionados para compor o conjunto de dados reduzido que será utilizado para avaliação do classificador. Para validação do método proposto foram realizados experimentos com 10 bases de dados da Gene Ontology. Tais experimentos consistiram em avaliar o desempenho de dois classificadores hierárquicos multirrótulo, Clus-HMC e MHC-CNN, em termos da medida AUPRC, sendo realizada uma comparação dos resultados produzidos a partir dos conjuntos de dados originais e dos conjuntos de dados reduzidos. Os resultados dos experimentos demonstram que houve um ganho em termos do percentual de redução do número de atributos sobre os dados originais e que o desempenho dos classificadores foi estatisticamente equivalente para os conjuntos de dados originais e reduzidos. |