Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Espezua Llerena, Soledad |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18153/tde-10102013-150240/
|
Resumo: |
Reduzir a dimensão de bancos de dados é um passo importante em processos de reconhecimento de padrões e aprendizagem de máquina. Projection Pursuit (PP) tem emergido como uma técnica relevante para tal fim, a qual busca projeções dos dados em espaços de baixa dimensão onde estruturas interessantes sejam reveladas. Apesar do relativo sucesso de PP em vários problemas de redução dimensional, a literatura mostra uma aplicação limitada da mesma em bancos de dados com elevada quantidade de atributos e poucas amostras, tais como os gerados em biologia molecular. Nesta tese, estudam-se formas de aproveitar o potencial de PP em problemas de alta dimensão e poucas amostras a fim de facilitar a posterior construção de classificadores. Entre as principais contribuições deste trabalho tem-se: i) Sequential Projection Pursuit Modified (SPPM), um método de busca sequencial de espaços de projeção baseado em Algoritmo Genético (AG) e operadores de cruzamento especializados; ii) Block Sequential Projection Pursuit Modified (Block-SPPM) e Whitened Sequential Projection Pursuit Modified (W-SPPM), duas estratégias de aplicação de SPPM em problemas com mais atributos do que amostras, sendo a primeira baseada e particionamento de atributos e a segunda baseada em pré-compactação dos dados. Avaliações experimentais sobre bancos de dados públicos de expressão gênica mostraram a eficácia das propostas em melhorar a acurácia de algoritmos de classificação populares em relação a vários outros métodos de redução dimensional, tanto de seleção quanto de extração de atributos, encontrando-se que W-SPPM oferece o melhor compromisso entre acurácia e custo computacional. |