Redução dimensional de dados de alta dimensão e poucas amostras usando Projection Pursuit

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Espezua Llerena, Soledad
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18153/tde-10102013-150240/
Resumo: Reduzir a dimensão de bancos de dados é um passo importante em processos de reconhecimento de padrões e aprendizagem de máquina. Projection Pursuit (PP) tem emergido como uma técnica relevante para tal fim, a qual busca projeções dos dados em espaços de baixa dimensão onde estruturas interessantes sejam reveladas. Apesar do relativo sucesso de PP em vários problemas de redução dimensional, a literatura mostra uma aplicação limitada da mesma em bancos de dados com elevada quantidade de atributos e poucas amostras, tais como os gerados em biologia molecular. Nesta tese, estudam-se formas de aproveitar o potencial de PP em problemas de alta dimensão e poucas amostras a fim de facilitar a posterior construção de classificadores. Entre as principais contribuições deste trabalho tem-se: i) Sequential Projection Pursuit Modified (SPPM), um método de busca sequencial de espaços de projeção baseado em Algoritmo Genético (AG) e operadores de cruzamento especializados; ii) Block Sequential Projection Pursuit Modified (Block-SPPM) e Whitened Sequential Projection Pursuit Modified (W-SPPM), duas estratégias de aplicação de SPPM em problemas com mais atributos do que amostras, sendo a primeira baseada e particionamento de atributos e a segunda baseada em pré-compactação dos dados. Avaliações experimentais sobre bancos de dados públicos de expressão gênica mostraram a eficácia das propostas em melhorar a acurácia de algoritmos de classificação populares em relação a vários outros métodos de redução dimensional, tanto de seleção quanto de extração de atributos, encontrando-se que W-SPPM oferece o melhor compromisso entre acurácia e custo computacional.