Predicting mobility patterns based on profiles of social media users: tourists case study
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , , |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/29793 |
Resumo: | Estudos baseados em fontes de dados tradicionais, tais como pesquisas de campo, possuem baixa escalabilidade. Os experimentos são limitados e os resultados restritos a pequenas regiões (como uma cidade ou estado). O uso de dados de redes sociais baseadas em localização (LBSN) reduzem o problema de escalabilidade ao permitir o estudo do comportamento social em grandes populações. Quando explorados com técnicas de Mineração de Dados e Aprendizado de Máquina, os dados LBSN podem ser usados para fornecer predições sobre relevantes dados culturais e comportamentais de cidades ou países ao redor do mundo. O principal objetivo deste trabalho é predizer e explorar o comportamento do usuário de LBSNs no contexto de padrões de mobilidade de turistas. Para alcançar este objetivo propomos o PredicTour, uma abordagem usada para processar “check-ins” compartilhados por usuários de LBSNs e predizer padrões de mobilidade de turistas com ou sem registro de visitas prévias quando viajam para novos países. O PredicTour é composto por três blocos: modelagem da mobilidade, extração de perfil e predição da mobilidade de turistas. No primeiro bloco, sequências de “check-ins”, dentro de um intervalo de tempo, são associados com outras informações do usuário para produzir uma nova estrutura chamada “descritor de mobilidade”. Na extração de perfil, mapas auto-organizáveis (SOMs) e o método de agrupamento C-means trabalham juntos para agrupar usuários de acordo com seus descritores de mobilidade. O PredicTour identifica então os perfis dos turistas e estima seus padrões de mobilidade em novos países. Quando comparamos o desempenho do PredicTour com três modelos clássicos de aprendizagem de máquina, os resultados indicam que nossa metodologia supera as abordagens de referência. Portanto, o PredicTour é uma boa alternativa para predizer e entender a mobilidade internacional de turistas, que possui impacto econômico na indústria de turismo, particularmente quando serviços e logística além das fronteiras internacionais devem ser fornecidos. A abordagem proposta neste trabalho pode ser usada em diferentes aplicações, como em sistemas de recomendação para turistas e como suporte na tomada de decisão no planejamento urbano, melhorando a experiência dos turistas e a atratividade de locais através de serviços personalizados. |