An ecosystemic view for developing biologically plausible optimization systems
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/507 |
Resumo: | A busca por ideias, modelos e paradigmas computacionais biologicamente inspirados e plausíveis sempre atraiu o interesse de cientistas da computação, especialmente na área de Computação Natural. Além disso, o conceito de otimização pode ser abstraído de vários processos naturais como, por exemplo, na evolução das espécies, no comportamento de grupos sociais, na dinâmica do sistema imunológico, nas estratégias de busca por alimento e nas relações ecológicas entre populações de animais. Com o melhor de nosso conhecimento, os ecossistemas naturais e seus conceitos ainda não foram explorados computacionalmente no contexto de otimização de funções e, portanto, eles são abordados nesta tese. Este trabalho destaca as principais propriedades de ecossistemas naturais que podem ser importantes para a construção de ferramentas computacionais para resolver problemas complexos de otimização. Também, a modelagem computacional para tais funcionalidades são introduzidas. A principal discussão apresentada nesta tese refere-se ao uso cooperativo de populações de soluções candidatas, co-evoluindo em um contexto ecossistêmico. Com esta analogia, cada população comportar-se de acordo com uma estratégia de busca específica que é empregada na evolução das soluções candidatas. Além da possibilidade de utilizar diferentes estratégias de busca cooperativamente, esta analogia abre a possibilidade de inserção de conceitos ecológicos no processo de otimização, permitindo o desenvolvimento de novos sistemas de otimização biologicamente inspirados e plausíveis. O potencial de alguns conceitos ecológicos é apresentado em um algoritmo canônico ecologicamente inspirado, chamado ECO (Ecological-inspired Optimiaztion algorithm). Alguns algoritmos baseados em população são utilizados para compor a abordagem proposta. Os problemas resolvidos nesta tese são várias funções contínuas de benckmark com um número alto de dimensões ($D = 200$) e o problema de predição de estrutura de proteínas para o modelo 2D AB. Além disso, o uso de dinâmica populacional para auto-regular o tamanho das populações; o uso de modelos heterogêneos com diferentes estratégias de busca; e o uso de agrupamento hierárquico para ajustar dinamicamente a formação de habitats e probabilisticamente definir as topologias de comunicação são alguns estudos de caso investigados. Os resultados obtidos se mostraram promissores considerando a aplicação do ecossistema computacional. Finalmente, conclusões e várias ideias para pesquisas futuras são apresentadas. |