Black Hole Weather Forecasting Using Deep Learning

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Pereira, Roberta Duarte
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/14/14131/tde-23102020-170517/
Resumo: Traditional methods of studying accretion flows onto black holes mainly consist of computationally expensive numerical simulations. This often imposes severe limitations to the dimensionality, simulation times, and resolution. Computational astrophysics is inurgent need of new tools to accelerate the calculations, thereby leading to faster results. We propose a deep learning method to make black hole weather forecasting: a data-driven approach for solving the chaotic dynamics of BH accretion flows. Our model can reproduce the results of a hydrodynamic simulation with an error <3% and at the sametime speeding-up the calculations by a factor of 1e4.5, thus reducing the simulation time