Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Pereira, Roberta Duarte |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/14/14131/tde-23102020-170517/
|
Resumo: |
Traditional methods of studying accretion flows onto black holes mainly consist of computationally expensive numerical simulations. This often imposes severe limitations to the dimensionality, simulation times, and resolution. Computational astrophysics is inurgent need of new tools to accelerate the calculations, thereby leading to faster results. We propose a deep learning method to make black hole weather forecasting: a data-driven approach for solving the chaotic dynamics of BH accretion flows. Our model can reproduce the results of a hydrodynamic simulation with an error <3% and at the sametime speeding-up the calculations by a factor of 1e4.5, thus reducing the simulation time |