Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Rocha, Gabriel Lopes da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/82/82131/tde-20082018-152023/
|
Resumo: |
Aplicamos a teoria de representação de funções isotrópicas para determinar o número mínimo de invariantes independentes necessários para caracterizar completamente a densidade de energia de deformação de sólido hiperelástico com duas direções de simetria material. Expressamos a densidade de energia em termos de dezoito invariantes e extraímos um conjunto de dez invariantes para analisar dois casos de simetria material. No caso de direções ortogonais, recuperamos o resultado clássico de sete invariantes e oferecemos uma justificativa para a escolha dos invariantes encontrados na literatura. Se as direções não são ortogonais, descobrimos que o número mínimo também é sete e corrigimos um erro em fórmula encontrada na literatura. Uma densidade de energia deste tipo é usada para modelar, na escala macroscópica, materiais de engenharia, tais como compósitos reforçados com fibras, e tecidos biológicos, tais como ossos. |