Detalhes bibliográficos
Ano de defesa: |
1998 |
Autor(a) principal: |
Oliveira Neto, Luttgardes de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-26032018-102459/
|
Resumo: |
O objetivo deste trabalho é apresentar uma nova formulação direta do Método dos Elementos de Contorno (M.E.C.) para análise de placas, utilizando a teoria de Kirchhoff, admitindo três parâmetros nodais de deslocamentos para sua representação integral: deslocamento transversal e suas derivadas nas direções normal e tangencial ao contorno. Dois valores nodais são usados para os esforços, momento fletor normal mn e força cortante equivalente Vn. Desta forma são escritas três equações integrais de contorno por nó, obtidas a partir da discretização da placa, segundo a forma usual do método. A vantagem mais perceptível desta formulação é a possibilidade de se fazer a ligação da placa analisada pelo M.E.C. com elementos lineares, representados por três valores nodais de deslocamentos que passam a ser compatibilizados diretamente, para a análise de edifícios. São apresentados exemplos numéricos da formulação e das ligações para comprovação da formulação. |