Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Fernandes, Gabriela Rezende |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18134/tde-10092015-144809/
|
Resumo: |
Neste trabalho, a formulação linear do método dos elementos de contorno - MEC, baseada nas hipóteses de Kirchhoff, é adaptada à análise de estruturas de pavimentos de edifícios, considerando-se as interações entre elementos lineares e de superfície. Leva-se em conta, além da flexão, o comportamento dos elementos como membrana. A representação integral deduzida contempla todos os elementos estruturais envolvidos, portanto garantido a monoliticidade do conjunto sem a necessidade de impor compatibilizações de deslocamentos e equilíbrio das forças generalizadas de superfícies ao longo das interfaces. A formulação integral é deduzida a partir da primeira identidade de Betti, onde a placa é considerada com variação de espessura, quer seja contínua ou abrupta. Porém, nesse trabalho apenas o caso de placas e vigas com rigidez constante são tratados. A partir dessa formulação, a fim de reduzir o número de graus de liberdade do problema, apresenta-se um modelo alternativo, onde as vigas são representadas por seus eixos médios. Estende-se essa formulação à análise não-linear, através da inclusão de campos de esforços iniciais, onde as integrais de domínio são calculadas aproximando-se o campo de esforços iniciais em células internas. A solução não-linear é obtida a partir da formulação implícita, na qual as correções que devem ser dadas aos estados de curvatura e das deformações de chapa em uma determinada iteração, são obtidas através do operador tangente consistente, que é atualizado a cada iteração, e da correção dos esforços nos pontos da placa. O critério elasto-plástico utilizado é o de Von Mises e a distribuição das tensões é aproximada, em uma seção qualquer da placa, por pontos discretos, que seguindo um esquema gaussiano, permite a integração numérica para o cálculo dos esforços. |