Dicotomias em equações diferenciais ordinárias generalizadas

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Toledo, Lucas Henrique Destro de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-19042023-084225/
Resumo: A teoria de equações diferenciais ordinárias generalizadas ou simplesmente EDOGs é uma teoria de equações diferenciais em espaços de Banach que lida com funções que apresentam muitas descontinuidades e (ou) são de variação ilimitada. Neste contexto, se X denota um espaço de Banach, apresentaremos o conceito de dicotomia exponencial para EDOGs da forma dx d = D[A(t)x], em que A : R L(X) é um operador, e exibiremos condições suficientes para a existência e unicidade de soluções limitadas (e T periódicas) para o problema perturbado dx d = D[A(t)x+ f(t)], onde os operadores A : R L(X) e f : R X satisfazem certas condições específicas. Além disso, aplicaremos os resultados obtidos a outros tipos de equações diferenciais: equações diferenciais em medida (EDMs) e equações diferenciais impulsivas (EDIs).