Dicotomias em equações diferenciais ordinárias generalizadas e aplicações

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Santos, Fábio Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-24032017-102955/
Resumo: Neste trabalho, estabelecemos a teoria de dicotomias para equações diferenciais ordinárias generalizadas, introduzindo os conceitos de dicotomias para essas equações generalizadas, estudando as suas propriedades e propondo resultados novos. Investigamos condições para a existência de soluções limitadas e condições para a existência de dicotomia exponencial. Utilizando teoremas de correspondência entre equações diferenciais ordinárias generalizadas e outras equações, traduzimos os resultados obtidos para os casos particulares de dicotomias para equações diferenciais em medida e para equações diferenciais com impulsos. O fato de trabalharmos no ambiente das equações diferenciais ordinárias generalizadas faz com que os resultados obtidos para os casos particulares possam envolver funções com muitas descontinuidades e de variação ilimitada.