Diagnóstico de curtos-circuitos a partir da alocação otimizada de medidores em um sistema de distribuição subterrâneo

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Festa, Alexandre Vinícius
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18154/tde-07042015-111816/
Resumo: O monitoramento e diagnóstico, com a consequente localização dos curtos-circuitos em Sistemas de Distribuição (SD), fazem parte de um processo complexo, exigindo esforços e agilidade das equipes técnicas de manutenção das concessionárias de energia elétrica. Quando se trata de um SD Subterrâneo (SDS), a complexidade de localização das faltas aumenta, pois não é possível realizar a inspeção visual. Por este motivo, desenvolver e aprimorar métodos para monitorar, classificar e localizar as situações de faltas em SD tem sido de relevante interesse para a comunidade técnico-científica nos últimos anos. Neste contexto, apresenta-se nesta pesquisa um método para processar as informações necessárias para classificar e localizar a ocorrência de um curto-circuito (monofásico, bifásico e/ou trifásico, com e/ou sem o envolvimento da terra) em um SDS. O processamento das informações foi realizado por meio da observação da propagação dos afundamentos de tensão, decorrentes de curtos-circuitos passíveis de ocorrência no SDS, e pela alocação de um número reduzido de medidores, permitindo a classificação e localização precisa da falta. Um dos diferenciais da metodologia proposta é que esta utiliza somente os valores eficazes das tensões trifásicas, registradas em medidores estrategicamente alocados, para indicação da área afetada e classificação das fases envolvidas. A metodologia é baseada no emprego de redes neurais artificiais. Os resultados encontrados são promissores, indicando a aplicabilidade da metodologia proposta.