A localização de faltas em um sistema de distribuição radial baseada na aplicação de árvores de decisão e redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Pessoa, André Luís da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18154/tde-11092017-095558/
Resumo: Os Sistemas de Distribuição (SDs), devido as suas topologias e configurações, dentre outros fatores, apresentam um desafio para a localização física das situações de faltas passíveis de ocorrência. Como fato, tem-se que uma localização de faltas, rápida e precisa, possibilita atenuar os transtornos que os usuários finais dos SDs viriam a ter em relação à qualidade do serviço prestado pelas distribuidoras. No contexto das redes elétricas inteligentes, e considerando medidores de qualidade da energia elétrica previamente alocados de forma otimizada, esta pesquisa propõe uma metodologia baseada em árvores de decisão e redes neurais artificiais para a localização de faltas em SDs radiais e aéreos. Foram realizados testes da metodologia proposta considerando variações no tipo, na impedância e no ângulo de incidência da falta aplicadas sobre o SD de 34 barras do IEEE (Institute of Electrical and Electronics Engineers). Para os testes de sensibilidade da metodologia desenvolvida, foram consideradas variações no carregamento do sistema, os erros inerentes ao sistema de medição, a variação no número de medidores disponível, o impacto de uma alocação não otimizada dos medidores e uma redução na taxa amostral. Os resultados encontrados foram promissores e indicam que a metodologia como desenvolvida poderá ser aplicada para SDs diferentes do caso teste utilizado.