End-to-End Visual Obstacle Avoidance for a Robotic Manipulator using Deep Reinforcement Learning

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Sanches, Felipe Padula
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-30082021-100712/
Resumo: Recent changes in industrial paradigms enforce that robots must be intelligent and capable of decision-making. Robotic manipulators need to satisfy many requirements for operating properly. Perhaps the most fundamental one is the capability of operating in its environment without collisions. In this work, we perform visual obstacle avoidance on goal-reaching tasks of a robotic manipulator using an end-to-end Deep Reinforcement Learning model. The motion control policy is responsible for reaching a target position while at the same time avoiding an obstacle positioned randomly in the scene. This policy uses vision and proprioceptive sensor data to operate. We train the reinforcement learning agent using Twin-Delayed DDPG (TD3) algorithm in a simulated environment, utilizing the Unity game engine and the ML-Agents toolkit. Experiments demonstrate that the agent can successfully learn a meaningful policy to avoid obstacles using images.