Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Aleixo, Robson Pereira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-26012023-200820/
|
Resumo: |
Duas doenças que preocupam diversos países atualmente são sífilis congênita e dengue. A sífilis é uma infecção sexualmente transmissível (IST) causada pela bactéria Treponema Pallidum. Ao ser transmitida em crianças durante o período da gestação, é chamada de sífilis congênita. Já a dengue é uma doença viral transmitida pelas espécies de mosquitos Aedes Aegypti e Aedes Albopictus. No Brasil, há uma preocupação constante com o aumento do número de casos. Utilizando o município do Rio de Janeiro como escopo de trabalho, propomos dois modelos de aprendizado de máquina. O primeiro deles estima a probabilidade da criança nascer com sífilis a partir de dados públicos do Sistema Único de Saúde (SUS). O segundo prevê casos de dengue para cada bairro da cidade, aplicando modelo de regressão. Neste caso, para o treinamento e teste do modelo, foram considerados dados sociodemográficos, climáticos, série histórica de casos da doença, quantidade de estabelecimentos de saúde, índice de mensuração da quantidade de mosquitos na região e série histórica de casos de zika e chikungunya. No caso da sífilis congênita, avaliamos os modelos pela métrica AUC (Area Under Curve) da curva ROC e o melhor resultado foi 68% para a predição de casos positivos, obtidos pelos modelos LightGBM e XGBoost. No que se refere à dengue, mensuramos o desempenho do modelo em diferentes métricas e cenários. O modelo que obteve os melhores resultados foi o Catboost, identificando 75% dos surtos em até três meses de previsão. Além disso, dedicamos parte significativa deste trabalho na explicabilidade das previsões de dengue. Para isso, utilizamos a ferramenta SHAP que proporciona diferentes visões que contemplam tanto a visão geral como a local de impacto das variáveis na previsão. |