Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Selvatici, Antonio Henrique Pinto |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-10062005-104556/
|
Resumo: |
Para ter uma aplicação real, um robô móvel deve poder desempenhar sua tarefa em ambientes desconhecidos. Uma arquitetura para robôs móveis que se adapte ao meio em que o robô se encontra é então desejável. Este trabalho apresenta uma arquitetura adaptativa para robôs móveis, de nome AAREACT, que aprende como coordenar comportamentos primitivos codificados por Campos Potenciais através de aprendizado por reforço. Cada comportamento utiliza a informação de apenas um tipo de sensor (visão, sonar ou odometria). O sensor de visão foi desenvolvido neste trabalho, e utiliza os tempos para colisão obtidos através da análise de seqüências de imagens para indicar a disposição dos objetos à frente do robô. A atuação da arquitetura proposta é comparada com a apresentada por uma arquitetura com coordenação fixa dos comportamentos, demonstrando melhor desempenho. Os resultados obtidos neste trabalho também apontam a alta capacidade de adaptação da arquitetura AAREACT. |