Processamento digital de sinais aplicado a análise de distribuição de tempos de relaxação em sinais de ressonância magnética nuclear

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Queiroz, Guylherme Emmanuel Tagliaferro de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-10082015-142117/
Resumo: Sabe-se que a relaxação de líquidos em meios porosos envolve três mecanismos principais: relaxação bulk, relaxação de superfície e difusão. Muitas vezes, os processos de relaxação de líquidos confinados em meios porosos são dominados pelo processo de relaxação de superfície e difusão do fluído. No chamado regime de difusão rápida, a relaxação de um único poro é comandada por uma função mono exponencial que depende, principalmente, da relação superfície-volume do poro, de modo que em um material poroso, isto é, contendo uma distribuição ampla de tamanho de poros, o sinal de decaimento de magnetização obtido por meio da ressonância magnética nuclear é formado pela soma de exponenciais com diferentes tempos de relaxação. O problema-chave abordado neste trabalho consiste, portanto, em obter por meio desse sinal de magnetização a distribuição dos tempos de relaxação que controlam o decaimento das funções mono-exponenciais. Matematicamente, esse sinal de decaimento de magnetização pode ser descrito na forma geral de uma equação integral de Fredholm do primeiro tipo, cuja solução é um reconhecido problema inverso mal-posto. As abordagens utilizadas na tentativa de solucionar o problema são oriundas de uma área conhecida como processamento digital de sinais, e os seguintes métodos são analisados e comparados neste trabalho: algoritmo dos mínimos quadrados médios com restrição de não negatividade (LMS-NN), algoritmo dos mínimos quadrados médios com restrição de não negatividade e regularizado (LMS-RNN), redes recorrentes de Hopfield e o já bem conhecido na solução de problemas inversos mal-postos, o algoritmo dos mínimos quadrados regularizado (LS-R). Os resultados obtidos no trabalho são bastante positivos, demonstrando que, além do LS-R, existem outras alternativas na solução do problema, que principalmente, permitem atestar as soluções obtidas por qualquer um dos algoritmos.