Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Dias, Rodrigo Lima |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09082021-231927/
|
Resumo: |
Let X be a compact Hausdorff topological space. The K-group of X, denoted by K(X), is the Grothendieck group associated to the commutative monoid of isomorphism classes of complex vector bundles over X, equipped with the Whitney sum. Let H be an infinite dimensional Hilbert space and F(H) be the set of Fredholm operators on H. The Atiyah-Jänich Theorem states that the families-index is a natural isomorphism between the monoid of homotopy classes of functions from X into F(H) and the group K(X). In case X is a singleton, the families-index is the classic Fredholm index, and the Atiyah-Jänich Theorem states that the arcwise connected components of F(H) are characterized by the Fredholm index. In this work, we give a detailed exposition of the Atiyah-Jänich Theorem, studying the necessary elements to understand the construction of the K-group of a compact Hausdorff topological space, the definition of the families-index and giving a proof that such an index is the mentioned isomorphism. |