Definição do nível de significância em função do tamanho amostral

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Oliveira, Melaine Cristina de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-23092014-160504/
Resumo: Atualmente, ao testar hipóteses utiliza-se como convenção um valor fixo (normalmente 0,05) para o Erro Tipo I máximo aceitável (probabilidade de Rejeitar H0 dado que ela é verdadeira) , também conhecido como nível de significância do teste de hipóteses proposto, representado por alpha. Na maioria das vezes nem se chega a calcular o Erro tipo II ou beta (probabilidade de Aceitar H0 dado que ela é falsa). Tampouco costuma-se questionar se o alpha adotado é razoável para o problema analisado ou mesmo para o tamanho amostral apresentado. Este texto visa levar à reflexão destas questões. Inclusive sugere que o nível de significância deve ser função do tamanho amostral. Ao invés de fixar-se um nível de significância único, sugerimos fixar a razão de gravidade entre os erros tipo I e tipo II baseado nas perdas incorridas em cada caso e assim, dado um tamanho amostral, definir o nível de significância ideal que minimiza a combinação linear dos erros de decisão. Mostraremos exemplos de hipóteses simples, compostas e precisas para a comparação de proporções, da forma mais convencionalmente utilizada comparada com a abordagem bayesiana proposta.