Seleção de modelos através de um teste de hipótese genuinamente Bayesiano: misturas de normais multivariadas e hipóteses separadas

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Lauretto, Marcelo de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/95/95131/tde-16062008-130319/
Resumo: Nesta tese propomos o Full Bayesian Significance Test (FBST), apresentado por Pereira e Stern em 1999, para análise de modelos de misturas de normais multivariadas. Estendemos o conceito de modelos de misturas para explorar outro problema clássico em Estatística, o problema de modelos separados. Nas duas propostas, realizamos experimentos numéricos inspirados em problemas biológicos importantes: o problema de classificação não supervisionada de genes baseada em seus níveis de expressão, e o problema da discriminação entre os modelos Weibull e Gompertz - distribuições clássicas em análise de sobrevivência.