Melhoramento do índice de detecções na espectrometria gama em amostras ambientais usando inteligência artificial

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Arine, Bruno Burini Robles [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/148825
Resumo: A utilização de elementos radioativos se estende hoje a diversos ramos da ciência e tecnologia, exigindo maneiras eficientes, precisas e sustentáveis de monitoramento para a preservação ambiental e a saúde humana. Uma técnica eficiente e não-destrutiva de análise de elementos emissores de raios gama é a espectrometria gama. No entanto, os softwares atuais de análise se deparam com certos empecilhos quando tratam de amostras ambientais, cujas concentrações de radioatividade são próximas do limite de detecção, ou quando certos radionuclídeos de interesse estão sujeitos a interferências. Este trabalho desenvolveu algoritmos de análise através de ferramentas do campo da inteligência artificial, de forma a obter um desempenho superior do que os métodos empregados em softwares clássicos de análise radiométrica. Três classificadores do campo da inteligência artificial foram testados; árvores de decisão (AD), máquinas de vetores de suporte (MVS) e redes neurais artificiais (RNA). Em testes com uma fonte de chumbo-210 de baixa atividade, a MVS obteve acurácia de 0,93, enquanto os métodos tradicionais obtiveram acurácia máxima de 0,73. Em testes com amostras reais de nitrato de uranila, a acurácia de classificação da RNA foi de 0,91, enquanto a acurácia dos métodos tradicionais foi de 0,70. Observou-se que os modelos baseados em inteligência artificial tiveram desempenho superior aos métodos tradicionais em todos os experimentos. Entretanto, esta vantagem diminui à medida que a relação sinal-ruído dos espectros aumenta, se tornando negligível quando a relação sinal-ruído supera o limite de detecção.