Energia cinética e pontos de equilíbrio de sistemas hamiltonianos

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Bortolatto, Renato Belinelo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-06072012-140351/
Resumo: Estudaremos uma influência não trivial da energia cinética sobre pontos de equilébrio de sistemas Hamiltonianos a partir da segunda parte do artigo de Garcia & Tal \"The influence of the kinetic energy in equilibrium of Hamiltonian systems\". Nesse artigo demonstra-se, para um exemplo explícito de Hamiltonianos C(R4) definidos por Hi = Ti + para i {1,2}, que as bacias de atração de H1 e H2 são subvariedades de R4 com dimensão distinta. Discutiremos aqui de que forma esse resultado está relacionado com o estudo da estabilidade segundo Liapunov de pontos de equilíbrio de sistemas Hamiltonianos, em especial com a busca de uma inversão para o celebrado teorema de Dirichlet-Lagrange. Por fim apresentamos um novo teorema que estende o resultado acima para toda uma família de energias potenciais ,,k. A saber, mostramos que, se os parâmetros ,,k satisfazem a um simples critério aritmético então as bacias de atração de Hi = Ti + ,,k tem dimensões distintas para i {1, 2}.