Seleção de casos de teste para sistemas de processamento de imagens utilizando conceitos de CBIR

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Narciso, Everton Note
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-25112014-160734/
Resumo: Os sistemas de processamento de imagens exercem um papel importante no que tange à emulação da visão humana, pois grande parte das informações que as pessoas obtêm do mundo real ocorre por meio de imagens. Desenvolver tais sistemas é uma tarefa complexa e que requer testes rigorosos para garantir a sua confiabilidade. Neste cenário, a seleção de casos de teste é fundamental, pois ajuda a eliminar os dados de teste redundantes e desnecessários enquanto procura manter altas taxas de detecção de erros. Na literatura há várias abordagens para seleção de casos de teste com foco em sistemas de entradas/saídas alfanuméricas, mas a seleção voltada a sistemas complexos (e.g. processamento de imagens) ainda é pouco explorada. Visando a contribuir neste campo de pesquisa, este trabalho apresenta um novo método intitulado Tcs&CbIR, que seleciona e recupera um subconjunto de imagens a partir de um vasto conjunto de teste. Os testes realizados com dois programas de processamento de imagens mostram que a nova abordagem pode superar a seleção aleatória pois, no contexto de avaliação apresentado, a quantidade de casos de teste necessária para revelar a presença de erros foi reduzida em até 87%. Os resultados obtidos revelam, também, o potencial da utilização de CBIR para abstração de informações, a importância da definição de extratores de características adequados e a influência que as funções de similaridade podem exercer na seleção de casos de teste.