Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Langoni, Virgílio de Melo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18152/tde-07112017-112730/
|
Resumo: |
Nas últimas décadas, as texturas dinâmicas ou texturas temporais, que são texturas com movimento, tornaram-se objetos de intenso interesse por parte de pesquisadores das áreas de processamento digital de imagens e visão computacional. Várias técnicas vêm sendo desenvolvidas, ou aperfeiçoadas, para a extração de características baseada em texturas dinâmicas. Essas técnicas, em vários casos, são a combinação de duas ou mais metodologias pré-existentes que visam apenas a extração de características e não a melhora da qualidade das características extraídas. Além disso, para os casos em que as características são \"pobres\" em qualidade, o resultado final do processamento poderá apresentar queda de desempenho. Assim, este trabalho propõe descritores que extraiam características dinâmicas de sequências de vídeos e realize a fusão de informações buscando aumentar o desempenho geral na segmentação e/ou reconhecimento de texturas ou cenas em movimento. Os resultados obtidos utilizando-se duas bases de vídeos demonstram que os descritores propostos chamados de D-LMP e D-SLMP foram superiores ao descritor da literatura comparado e denominado de LBP-TOP. Além de apresentarem taxas globais de acurácia, precisão e sensibilidade superiores, os descritores propostos extraem características em um tempo inferior ao descritor LBP-TOP, o que os tornam mais práticos para a maioria das aplicações. A fusão de dados oriundos de regiões com diferentes características dinâmicas aumentou o desempenho dos descritores, demonstrando assim, que a técnica pode ser aplicada não somente para a classificação de texturas dinâmicas em sí, mas também para a classificação de cenas gerais em vídeos. |