Novos operadores de fusão aplicados a descritores de textura

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Pereira Junior, Osmando
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18152/tde-06012020-160732/
Resumo: A análise de texturas é fundamental em diversas aplicações de visão computacional e de reconhecimento de padrões. Diversos descritores de textura são propostos na literatura, com a finalidade de se representar adequadamente as imagens de textura, sendo a extração de características uma etapa essencial nesta tarefa. No entanto, o desempenho dos descritores está relacionado ao tipo de imagem em que são aplicados, não havendo um descritor que garanta o melhor resultado para todo conjunto de imagens. Procedimentos como a fusão da informação permitem obter resultados melhores que os obtidos com a aplicação das respectivas técnicas individualmente. A fim de contribuir para a melhor representação de texturas, esta tese propõe três novos descritores de textura baseados em fusão de características, Completed Mean Local Mapped Pattern (CMLMP), Completed Median Local Mapped Pattern (CMedianLMP) e Completed Z with Tilted Z Local Mapped Pattern (CZTZLMP), fundamentados na associação da metodologia de extração de informações complementares de uma textura pelas componentes Sinal, Magnitude e Centro, com uma regra específica de determinação das diferenças de nível de cinza de uma vizinhança. Propõe também dois novos operadores de fusão, SomaM e GramM no espaço de fusão, cujas regras de combinação de características evidenciam as informações complementares entre os diferentes descritores combinados. Os métodos propostos foram aplicados a registro de imagens e a reconhecimento de distorção arquitetural mamária em mamografias digitais. Os respectivos desempenhos foram comparados aos de diversos descritores de textura e a operadores de fusão publicados na literatura. De acordo com os resultados obtidos, os descritores propostos apresentaram desempenho superior ao dos demais descritores com os quais foram comparados, o que incentiva a utilização dos mesmos em outras aplicações. Além disso, os operadores de fusão propostos permitiram resultados melhores que os obtidos com a aplicação dos demais operadores e resultaram em vetores de características de menor dimensão.