"Visualizando a organização e o comportamento de estruturas métricas: aplicações em consultas por similaridade"

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Chino, Fábio Jun Takada
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26062005-215844/
Resumo: O uso da computação em uma variedade cada vez maior de aplicações fez com que os Sistemas de Gerenciamento de Bases de Dados (SGBD) passassem a ser utilizados para armazenar os mais diversos tipos de dados complexos, como imagens, sons e cadeias de DNA entre outros. Consultas baseadas em relações de ordem total ou igualdade não podem ser aplicadas ou tem aplicações limitadas quando executadas nestes conjuntos de dados. Logo, efetua-se consultas por similaridade baseadas no conteúdo de dados desses tipos. Se tais conjuntos de dados podem ser representados em um espaço métrico, é possível utilizar os Métodos de Acesso Métricos (MAM), como a Slim-Tree, a M-Tree e a DBM-Tree, para otimizar as consultas por similaridade. Porém, os MAM são muito difíceis de compreender e analisar devido à complexidade de suas estruturas. Esta dissertação apresenta um sistema de visualização que permite a inspeção visual da organização e do comportamento de MAM, provendo aos desenvolvedores e administradores de SGBD uma forma rápida e fácil para obter informações essenciais sobre estas estruturas que podem levar a melhorias no desempenho de consultas e outras operações.