Seleção de variáveis em regressão 'L IND.1'

Detalhes bibliográficos
Ano de defesa: 1998
Autor(a) principal: Tavares, Rodrigo Andrade
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-020648/
Resumo: O método mais utilizado no ajuste de modelos de regressão múltipla é o de mínimos quadrados, devido a suas propriedades estatísticas serem amplamente estudadas e facilidades computacionais. Contudo, este método é sensível a valores aberrantes, que são muito freqüentes no caso da distribuição dos erros possuir caudas pesadas. O objetivo desta dissertação é apresentar o método de estimação 'L IND.1', que é resistente a valores aberrantes na variável resposta. Será explorado, em particular, o problema de seleção de variáveis, sendo apresentados e desenvolvidos os critérios quando são analisadas as possíveis regressões, e procedimento automáticos de seleção. Um estudo preliminar sobre os efeitos da multicolinearidade nas estimativas 'L IND.1' é também executado. São apresentados também, programas que tornam viável a utilização do método 'L IND.1' em problemas de regressão