Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Martinez Florez, Guillermo Domingo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-07072011-154259/
|
Resumo: |
Em analise de dados que apresentam certo grau de assimetria a suposicao que as observações seguem uma distribuição normal, pode resultar ser uma suposição irreal e a aplicação deste modelo pode ocultar características importantes do modelo verdadeiro. Este tipo de situação deu forca á aplicação de modelo assimétricos, destacando-se entre estes a família de distribuições skew-symmetric, desenvolvida por Azzalini (1985). Neste trabalho nos apresentamos uma segunda proposta para a anàlise de dados com presença importante de assimetria e/ou curtose, comparado com a distribuição normal. Nós apresentamos e estudamos algumas propriedades dos modelos alfa-potência e log-alfa-potência, onde também estudamos o problema de estimação, as matrizes de informação observada e esperada de Fisher e o grau do viés dos estimadores mediante alguns processos de simulação. Nós introduzimos um modelo mais estável que o modelo alfa- potência do qual derivamos o caso bimodal desta distribuição e introduzimos os modelos bimodal simêtrico e assimêtrico alfa-potencia. Posteriormente nós estendemos a distribuição alfa-potência para o caso do modelo Birnbaum-Saunders, estudamos as propriedades deste novo modelo, desenvolvemos estimadores para os parametros e propomos estimadores com viés corrigido. Também introduzimos o modelo de regressão alfa-potência para dados censurados e não censurados e para o modelo de regressão log-linear Birnbaum-Saunders; aqui nós derivamos os estimadores dos parâmetros e estudamos algumas técnicas de validação dos modelos. Por ultimo nós fazemos a extensão multivariada do modelo alfa-potência e estudamos alguns processos de estimação dos parâmetros. Para todos os casos estudados apresentam-se ilustrações com dados já analisados previamente com outras suposições de distribuições. |