Forecasting reservoir levels using data-driven methods and typical scenarios

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Oliveira Júnior, Jordão Natal de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18153/tde-30052025-100430/
Resumo: Precise forecasting of reservoir levels is essential in hydroelectric power generation to maximize energy output and guarantee the sustainability of water resources. Forecasting water variables is intricate because of multiple uncertainties and intricate teleconnection couplings. Predicting the outcome and fully comprehending their relationship is challenging, thereby rendering it unfeasible to consolidate them into a single equation. A different strategy involves employing data-driven techniques for making predictions. This thesis presents a novel probabilistic model for forecasting reservoir levels. The proposed methodology combines traditional forecasting techniques with advanced probabilistic modeling methods. This integration addresses the uncertainties and complexities associated with hydrological and meteorological variables impacting reservoir levels. The model was extensively tested using historical data from the Furnas reservoir and energy equivalent reservoir, which included various seasonal cycles and hydrological fluctuations. The results demonstrate that it surpasses conventional deterministic-only forecasting models regarding predictive accuracy, providing strong evidence of its capability to enhance operational decision-making in hydroelectric power management. Additionally, it produces credibility intervals and assesses scenario-based forecasts for convenient evaluation and efficient computation.