[en] LINEAR GROWTH BAYESIAN MODELS APPLIED TO TIME SERIES FORECASTING
Ano de defesa: | 2007 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9836&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9836&idi=2 http://doi.org/10.17771/PUCRio.acad.9836 |
Resumo: | [pt] O objetivo primordial desta tese é descrever e discutir um método para previsão de séries temporais que apresentam descontinuidades bruscas - o chamado Método Bayesiano de Crescimento Linear de Estados Múltiplos (MCL-EM), desenvolvido por Harrison e Stevens. Na primeira parte é feito um rápido apanhado dos métodos existentes para previsão de séries temporais e seu relacionamento com métodos bayesianos mais gerais. A seguir é apresentado o MCL-EM e comparado com os principais métodos clássicos de crescimento linear. Finalmente são apresentadas algumas aplicações a séries reais e simuladas e analisadas suas vantagens e desvantagens em relação aos demais métodos em geral. |