Análise de diagnóstico em modelos de regressão ZAGA e ZAIG

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Rodrigues, Juliana Scudilio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-12082019-164715/
Resumo: Resíduos desempenham um papel importante na verificação do ajuste do modelo e na idenfiticação de observações discrepantes e/ou influentes. Neste trabalho, estudamos duas classes de resíduos para os modelos de regressão gama inflacionados no zero (ZAGA) e gaussiana inversa inflacionados no zero (ZAIG). Essas classes de resíduos são uma função de um resíduo para o componente contínuo do modelo e da estimativa de máxima verossimilhança da probabilidade da observação assumir o valor zero. Estudos de simulação de Monte Carlo foram realizados para examinar as propriedades dessas classes de resíduos em ambos os modelos de regressão (ZAGA e ZAIG). Os resultados mostraram que um resíduo de uma dessas classes tem algumas propriedades semelhantes à da distribuição normal padrão nos modelos estudados. Além desse objetivo principal, descrevemos os modelos de regressão ZAGA e ZAIG, estudamos propriedades de alguns resíduos em modelos lineares generalizados com resposta gama e gaussiana inversa e discutimos outros aspectos de análise de diagnóstico nos modelos ZAGA e ZAIG. Para finalizar, foi feita uma aplicação com dados reais de fundos de investimentos, em que ajustamos o modelo ZAIG, para exemplificar os tópicos discutidos e mostrar a importância desses modelos e as vantagens de um dos resíduos estudados na análise de dados reais.